• Home
  • Ben R Rich
  • Skunk Works: A Personal Memoir of My Years at Lockheed Page 2

Skunk Works: A Personal Memoir of My Years at Lockheed Read online

Page 2


  I began by loosening the leash on all my department heads. I told them what they already knew: I was not a genius like Kelly, who knew by experience and instinct how to solve the most complex technical problems. I said, “I have no intention of trying to make all the decisions around here the way that Kelly always did. From now on, you’ll have to make most of the tough calls on your own. I’ll be decisive in telling you what I want, then I’ll step out of your way and let you do it. I’ll take the crap from the big wheels, but if you screw up I want to hear it first.”

  I left unspoken the obvious fact that I could not be taking over at a worse time, in the sour aftermath of the Vietnam War, when defense spending was about as low as military morale, and we were down to fifteen hundred workers from a high of six thousand five years earlier. The Ford administration still had two years to run, and Defense Secretary Donald Rumsfeld was acting like a guy with battery problems on his hearing aid when it came to listening to any pitches for new airplanes. And to add anxiety to a less than promising business climate, Lockheed was then teetering on the edge of corporate and moral bankruptcy in the wake of a bribery scandal, which first surfaced the year before I took over and threatened to bring down nearly half a dozen governments around the world.

  Lockheed executives admitted paying millions in bribes over more than a decade to the Dutch (Crown Prince Bernhard, husband of Queen Juliana, in particular), to key Japanese and West German politicians, to Italian officials and generals, and to other highly placed figures from Hong Kong to Saudi Arabia, in order to get them to buy our airplanes. Kelly was so sickened by these revelations that he had almost quit, even though the top Lockheed management implicated in the scandal resigned in disgrace.

  Lockheed was convulsed by some of the worst troubles to simultaneously confront an American corporation. We were also nearly bankrupt from an ill-conceived attempt to reenter the commercial airliner sweepstakes in 1969 with our own Tristar L-1011 in competition against the McDonnell Douglas DC-10. They used American engines, while we teamed up with Rolls-Royce, thinking that the Anglo-American partnership gave us an advantage in the European market. We had built a dozen airliners when Rolls-Royce unexpectedly declared bankruptcy, leaving us with twelve hugely expensive, engineless “gliders” that nobody wanted. The British government bailed out Rolls-Royce in 1971, and the following year Congress very reluctantly came to our rescue by voting us $250 million in loan guarantees; but our losses ultimately reached a staggering $2 billion, and in late 1974, Textron Corporation almost acquired all of Lockheed at a “fire sale” price of $85 million. The Skunk Works would have been sold off with the corporation’s other assets and then tossed into limbo as a tax write-off.

  I had to get new business fast or face mounting pressure from the corporate bean counters to unload my higher-salaried people. Kelly was known far and wide as “Mr. Lockheed.” No one upstairs had dared to cross him. But I was just plain Ben Rich. I was respected by the corporate types, but I had no political clout whatsoever. They demanded that I be a hell of a lot more “client friendly” than Kelly had been. It was an open secret in the industry that Kelly had often been his own worst enemy in his unbending and stubborn dealings with the blue-suiters. Until they had run afoul of our leader, not too many two- or three-star generals had been told to their faces that they didn’t know shit from Shinola. But smoothing relations with Pentagon brass would only serve to push me away from the dock—I had a long hard row ahead to reach the promised land. If the Skunk Works hoped to survive as a viable entity, we somehow would have to refashion the glory years last enjoyed in the 1960s when we had forty-two separate projects going and helped Lockheed become the aerospace industry leader in defense contracts.

  I knew there were several powerful enemies of the Skunk Works on Lockheed’s board who would close us down in a flash. They resented our independence and occasional arrogance, and suspected us of being profligate spenders hiding our excesses behind screens of secrecy imposed by our highly classified work. These suspicions were fueled by the fact that Kelly usually got whatever he wanted from Lockheed’s board—whether it was costly new machinery or raises for his top people. Nevertheless, Kelly actually was as tightfisted as any beady-eyed New England banker and would raise hell the moment we began dropping behind schedule or going over budget.

  Knowing that I didn’t have much time to find new business, I flew to Washington, hat in hand, with a fresh shoeshine and a brave smile. My objective was to convince General David Jones, the Air Force chief of staff, of the need to restart the production line of the U-2 spy plane. It was a long-shot attempt, to say the least, because never before in history had the blue-suiters ever reopened a production line for any airplane in the Air Force’s inventory. But this airplane was special. I have no doubt that fifty years from now the U-2 will still be in service to the nation. The aircraft was then more than twenty-five years old and remained the mainstay of our airborne reconnaissance activities. It needed to be updated with a more powerful engine and fitted with advanced avionics to become even more effective flying its tactical missions around the world. That meant adding a capability to perform reconnaissance coverage via optical systems that used radar camera images from half a world away.

  But airplanes are like people. They tend to gain weight as they get older. The first time the U-2 took off to overfly Russia back in 1955, it was a svelte youngster at 17,000 pounds. Now it had ballooned in middle age to 40 percent over the original model and bent the scales at 40,000 pounds. I had been trying for years to get the Pentagon to update the U-2. In the 1960s, I had a meeting with Alain Enthoven, who was head of Secretary of Defense Bob McNamara’s vaunted systems analysis group—the so-called Whiz Kids, many brought with him from Ford to work their competitive cold-bloodedness on the Department of Defense. Enthoven asked, “Why should we buy more U-2s when we haven’t lost any?” I explained that it was cheaper to buy and update the airplane now rather than wait for crashes or losses, because in ten years costs rise by a factor of ten. He just couldn’t see the logic. So I told him the story of the kid who proudly tells his father that he saved a quarter by running alongside a bus rather than taking it. The father slapped the kid on the head for not running next to a taxi and saving a buck fifty. Alain didn’t get it.

  During his reign, Kelly insisted on dealing with all of the top Pentagon brass himself, so by necessity I nibbled around the edges for years, cultivating bright young majors and colonels on the way up who were now taking command as generals. I had gone to the Pentagon many times as Kelly’s chart holder while he briefed the brass. Once we briefed McNamara, seated behind the big desk that had belonged to General “Black Jack” Pershing, the World War I Army general, on our Mach 3 Blackbird spy plane, which we wanted to convert into an interceptor. It was a great idea, but we were fighting an uphill battle. McNamara was intent on buying a costly new bomber, the B-70, and was deaf to any other new airplane projects. I set up the charts while Kelly made the pitch during McNamara’s lunch hour. “Mac the Knife” sat concentrating intently on his soup and salad, while skimming a report of some sort, and never once looked up until we were finished. Then he wiped his lips with a napkin and bid us good day. On the way out I teased Kelly, “Never try to pitch a guy while he’s eating and reading at the same time.”

  Now the situation was more propitious for eating and pitching at the same time. General Jones invited me in for lunch and was very favorably disposed to my idea for a new fleet of spiffy U-2s. I told him I’d give him a good price, but that he had to buy the entire production line of forty-five airplanes. Jones thought thirty-five would be more like it and said he’d study our proposal. “By the way,” he said, “I’d want the U-2 designation changed. No spy plane connotation that would make our allies shy about letting us use their bases.”

  I said, “General, I believe in the well-known golden rule. If you’ve got the gold, you make the rules. Call it whatever you want.”

  The Pentagon ultimately renamed the U-
2 the TR-1. T for tactical, R for reconnaissance. The press immediately called it the TR-1 spy plane.

  I left the Pentagon thinking we had a deal, but the study General Jones ordered took months to wend its way through the blue-suit bureaucracy, and we didn’t sign the contract for two more years. Updating our old airplanes would help to keep our corporate accountants at bay for a while. With the TR-1, I was merely buying time. To survive, the Skunk Works needed substantial new projects involving revolutionary new technology that our customer could not wait to get his hands on. Tightrope walking on the cutting edge was our stock-in-trade.

  “Don’t try to ape me,” Kelly had advised me. “Don’t try to take credit for the airplanes I built. Go build your own. And don’t build an airplane you don’t really believe in. Don’t prostitute yourself or the reputation of the Skunk Works. Do what’s right by sticking to your convictions and you’ll do okay.”

  As it happened, I was damned lucky. Stealth technology landed in my lap—a gift from the gods assigned to take care of beleaguered executives, I guess. I take credit for immediately recognizing the value of the gift I was handed before it became apparent to everyone else, and for taking major risks in expending development costs before we had any real government interest or commitment. The result was that we produced the most significant advance in military aviation since jet engines, while rendering null and void the enormous 300-billion-ruble investment the Soviets had made in missile and radar defenses over the years. No matter how potent their missiles or powerful their radar, they could not shoot down what they could not see. The only limits on a stealth attack airplane were its own fuel capacity and range. Otherwise, the means to counter stealth were beyond current technology, demanding unreasonably costly funding and the creation of new generations of supercomputers at least twenty-five years off. I felt certain that stealth airplanes would rule the skies for the remainder of my lifetime. And I came from a family of long livers.

  The stealth story actually began in July 1975, about six months after I took over the Skunk Works. I attended one of those periodic secret Pentagon briefings held to update those with a need to know on the latest Soviet technical advances in weapons and electronics. The U.S. had only two defensive ground-to-air missile systems deployed to protect bases—the Patriot and the Hawk, both only so-so in comparison to the Soviet weapons.

  By contrast, the Russians deployed fifteen different missile systems to defend their cities and vital strategic interests. Those of us in the business of furnishing attack systems had to be updated on the latest defensive threat. Then we would go back to the drawing board to find new ways to defeat those defenses, while the other side was equally busy devising fresh obstacles to our plans. It was point counterpoint, played without end. Their early-warning radar systems, with 200-foot-long antennas, could pick up an intruding aircraft from hundreds of miles away. Those long-range systems couldn’t tell altitude or the type of airplane invading their airspace, but passed along the intruder to systems that could.

  Their SAM ground-to-air missile batteries were able to engage both low-flying attack fighters and cruise missiles at the same time. Their fighters were armed with warning radars and air-to-air missiles capable of distinguishing between low-flying aircraft and ground clutter with disarming effectiveness. The Soviet SAM-5, a defensive surface-to-air missile of tremendous thrust, could reach heights of 125,000 feet and could be tipped with small nuclear warheads. At that height, the Soviets didn’t worry about impacting the ground below with the heat or shock wave from a very small megaton atomic blast and estimated that upper stratospheric winds would carry the radiation fallout over Finland or Sweden. An atomic explosion by an air defense missile could bring down any high-flying enemy bomber within a vicinity of probably a hundred miles with its shock wave and explosive power. Our Air Force crews undertaking reconnaissance intelligence-gathering missions over territory protected by SAM-5 sites all wore special glasses that would keep them from going blind from atomic flash. So these weapons system advances posed a damned serious threat.

  Most troublesome, the Russians were exporting their advanced nonnuclear defensive systems to clients and customers around the world, making our airplanes and crews increasingly vulnerable. The Syrians now had nonnuclear SAM-5s. And during our Pentagon briefing we were subjected to a chilling analysis of the 1973 Yom Kippur War involving Israel, Syria, and Egypt. What we heard was extremely upsetting. Although the Israelis flew our latest and most advanced jet attack aircraft and their combat pilots were equal to our own, they suffered tremendous losses against an estimated arsenal of 30,000 Soviet-supplied missiles to the Arab forces. The Israelis lost 109 airplanes in 18 days, mostly to radar-guided ground-to-air missiles and antiaircraft batteries, manned by undertrained and often undisciplined Egyptian and Syrian personnel. What really rattled our Air Force planners was that the evasive maneuvering by Israeli pilots to avoid missiles—the same tactics used by our own pilots—proved to be a disaster. All the turning and twisting calculated to slow down an incoming missile made the Israeli aircraft vulnerable to conventional ground fire. If the Israeli loss ratio were extrapolated into a war between the U.S. and the highly trained Soviet Union and Warsaw Pact in Eastern Europe, a war fought using similar airplanes, pilot training, and ground defenses, our air force could expect to be decimated in only seventeen days.

  I was not too surprised. The Skunk Works had firsthand experience with the latest Soviet equipment because the CIA had scored spectacular covert successes in acquiring their hardware by one means or another. We could not only test their latest fighters or new radars or missile systems, but actually fly against them. Skunk Works technicians pulled these systems apart, then put them back together, and made tools and spare parts to keep the Russian equipment serviced during testing, so we had a sound notion of what we were up against.

  Still, the Air Force had no real interest in using the stealth option to neutralize Soviet defenses. The reason was that while we had learned over the years how to make an airplane less observable to enemy radar, the conventional Pentagon view was that the effectiveness of enemy radar had leaped far ahead of our ability to thwart it. The smart money in aerospace was betting scarce development funds on building airplanes that could avoid the Soviet radar net by coming in just over the treetops, like the new B-1 bomber ordered from Rockwell by the Strategic Air Command, whose purpose was to sneak past ground defenses and deliver a nuclear weapon deep inside the Soviet motherland.

  That Pentagon briefing was particularly sobering because it was one of those rare times when our side admitted to a potentially serious gap that tipped the balances against us. I had our advanced planning people noodling all kinds of fantasies—pilotless, remote-controlled drone tactical bombers and hypersonic aircraft that would blister past Soviet radar defenses at better than five times the speed of sound once we solved awesomely difficult technologies. I wish I could claim to have had a sudden two a.m. revelation that made me bolt upright in bed and shout “Eureka!” But most of my dreams involved being chased through a maze of blind alleys by a horde of hostile accountants wielding axes and pitchforks.

  The truth is that an exceptional thirty-six-year-old Skunk Works mathematician and radar specialist named Denys Overholser decided to drop by my office one April afternoon and presented me with the Rosetta Stone breakthrough for stealth technology.

  The gift he handed to me over a cup of decaf instant coffee would make an attack airplane so difficult to detect that it would be invulnerable against the most advanced radar systems yet invented, and survivable even against the most heavily defended targets in the world.

  Denys had discovered this nugget deep inside a long, dense technical paper on radar written by one of Russia’s leading experts and published in Moscow nine years earlier. That paper was a sleeper in more ways than one: called “Method of Edge Waves in the Physical Theory of Diffraction,” it had only recently been translated by the Air Force Foreign Technology Division from the original Russi
an language. The author was Pyotr Ufimtsev, chief scientist at the Moscow Institute of Radio Engineering. As Denys admitted, the paper was so obtuse and impenetrable that only a nerd’s nerd would have waded through it all—underlining yet! The nuggets Denys unearthed were found near the end of its forty pages. As he explained it, Ufimtsev had revisited a century-old set of formulas derived by Scottish physicist James Clerk Maxwell and later refined by the German electromagnetics expert Arnold Johannes Sommerfeld. These calculations predicted the manner in which a given geometric configuration would reflect electromagnetic radiation. Ufimtsev had taken this early work a step further.

  “Ben, this guy has shown us how to accurately calculate radar cross sections across the surface of the wing and at the edge of the wing and put together these two calculations for an accurate total.”

  Denys saw my blank stare. Radar cross section calculations were a branch of medieval alchemy as far as the non-initiated were concerned. Making big objects appear tiny on a radar screen was probably the most complicated, frustrating, and difficult part of modern warplane designing. A radar beam is an electromagnetic field, and the amount of energy reflected back from the target determines its visibility on radar. For example, our B-52, the mainstay long-range bomber of the Strategic Air Command for more than a generation, was the equivalent of a flying dairy barn when viewed from the side on radar. Our F-15 tactical fighter was as big as a two-story Cape Cod house with a carport. It was questionable whether the F-15 or the newer B-70 bomber would be able to survive the ever-improving Soviet defensive net. The F-111 tactical fighter-bomber, using terrain-following radar to fly close to the deck and “hide” in ground clutter, wouldn’t survive either. Operating mostly at night, the airplane’s radar kept it from hitting mountains, but as we discovered in Vietnam, it also acted like a four-alarm siren to enemy defenses that picked up the F-111 radar from two hundred miles away. We desperately needed new answers, and Ufimtsev had provided us with an “industrial-strength” theory that now made it possible to accurately calculate the lowest possible radar cross section and achieve levels of stealthiness never before imagined.