The Economics of Artificial Intelligence Read online

Page 10


  ture. It is also possible, even likely, that many people will not share in those

  benefi ts. Economists are well positioned to contribute to a research agenda

  of documenting and understanding the often intangible changes associated

  with AI and its broader economic implications.

  Realizing the benefi ts of AI is far from automatic. It will require eff ort

  and entrepreneurship to develop the needed complements, and adaptability

  at the individual, organizational, and societal levels to undertake the associ-

  ated restructuring. Theory predicts that the winners will be those with the

  lowest adjustment costs and that put as many of the right complements in

  place as possible. This is partly a matter of good fortune, but with the right

  road map, it is also something for which they, and all of us, can prepare.

  gs

  edw

  (5)

  10 la

  allo

  0.0857

  (0.278)

  1.949***

  (0.624)

  0.009

  0.136

  0.911***

  0.023

  0.158

  0.910**

  0.030

  50

  (0.233)

  (0.257)

  50

  (0.311)

  (0.412)

  50

  gs

  edw

  (4)

  4 la

  allo

  0.0857

  (0.242)

  1.949***

  (0.545)

  0.009

  0.136

  0.911***

  0.023

  0.158

  0.910**

  0.030

  50

  (0.208)

  (0.244)

  50

  (0.266)

  (0.368)

  50

  gs

  edw

  (3)

  3 la

  allo

  0.0857

  (0.227)

  1.949***

  (0.511)

  0.009

  0.136

  0.911***

  0.023

  0.158

  0.910**

  0.030

  50

  (0.197)

  (0.233)

  50

  (0.246)

  (0.341)

  50

  gs

  edw

  (2)

  2 la

  allo

  0.0857

  (0.207)

  1.949***

  (0.465)

  0.009

  0.136

  0.911***

  0.023

  0.158

  0.910***

  0.030

  50

  (0.181)

  (0.216)

  50

  (0.221)

  (0.306)

  50

  g

  edw

  (1)

  1 la

  allo

  0.0857

  (0.177)

  1.949***

  (0.398)

  0.009

  0.136

  0.911***

  0.023

  0.158

  0.910***

  0.030

  50

  (0.158)

  (0.188)

  50

  (0.187)

  (0.259)

  50

  wth

  ors with longer time dependence

  o

  wtho

  d err

  vity gr

  oducti

  wtho

  est standar

  W

  bor pr

  wth

  ey-

  o

  w

  , la

  , TFP gr

  , TFP (util. adj.) gr

  ge

  ge

  ge

  wth

  a

  a

  a

  o

  er

  vity gr

  er

  wth

  er

  .

  v

  v

  o

  v

  el.v el. el.

  ear a

  oducti

  ear a

  ear a

  v

  v

  - y

  - y

  - y

  entheses

  essions with Ne

  ge pr

  ge TFP gr

  ge TFPua gr

  cent le

  , ten

  a

  , ten

  a

  , ten

  a

  cent le

  cent le

  egr

  er

  er

  er

  R

  v

  v

  v

  ors in par

  essions

  ear a

  essions

  ear a

  essions

  ear a

  t the 1 per

  egr

  - y

  egr

  - y

  egr

  - y

  d err

  t the 5 per

  t the 10 per

  est r

  tions

  tions

  tions

  a

  ed

  est r

  a

  ed

  est r

  a

  ed

  cant a

  cant a

  - W

  - W

  - W

  cant a

  ey

  evious ten

  Standar

  - squar

  ey

  evious ten

  - squar

  ey

  evious ten

  - squar

  w

  w

  w

  ppendix

  able 1A.1

  Pr

  Pr

  Pr

  A

  T

  Ne

  Constant

  Observ

  R

  Ne

  Constant

  Observ

  R

  Ne

  Constant

  Observ

  R

  Note:

  ***Signifi

  **Signifi

  *Signifi

  Artifi cial Intelligence and the Modern Productivity Paradox 53

  Table 1A.2

  Parameters for the toy economy J- curve

  Net

  Net capital

  Investment

  Capital stock

  Time

  investment

  stock

  growth rate

  growth rate

  Output

  0.0

  1.0

  10.0

  10,000.0

  1.0

  15.0

  25.0

  14.0

  1.5

  10,500.0

  2.0

  80.0

  105.0

  4.3

  3.2

  11,025.0

  3.0

  160.0

  265.0

  1.0

  1.5

  11,576.3

  4.0

  220.0

  485.0

  0.4

  0.8

  12,155.1

  5.0

  250.0

  735.0

  0.1

  0.5

  12,762.8

  6.0

  220.0

  955.0

  – 0.1

  0.3

  13,401.0

  7.0

  140.0

  1,095.0

  – 0.4

  0.1

  14,071.0

  8.0

  100.0

  1,195.0<
br />
  – 0.3

  0.1

  14,774.6

  9.0

  50.0

  1,245.0

  – 0.5

  0.0

  15,513.3

  10.0

  20.0

  1,265.0

  – 0.6

  0.0

  16,288.9

  11.0

  10.0

  1,275.0

  – 0.5

  0.0

  17,103.4

  12.0

  0.0

  1,275.0

  – 1.0

  0.0

  17,958.6

  References

  Abramovitz, Moses. 1956. “Resource and Output Trends in the U.S. Since 1870.”

  American Economic Review, Papers and Proceedings 46 (2): 5– 23.

  Acemoglu, D., and P. Restrepo. 2017. “The Race between Machine and Man: Impli-

  cations of Technology for Growth, Factor Shares and Employment.” NBER

  Working Paper no. 22252, Cambridge, MA.

  Agrawal, Ajay, Joshua Gans, and Avi Goldfarb. 2017. “What to Expect from Artifi -

  cial Intelligence.” Sloan Management Review, Feb. 7. https:// sloanreview .mit .edu

  / article / what - to-expect- from- artifi cial- intelligence/.

  Alloway, Tracy. 2015. “Goldman: How ‘Grand Theft Auto’ Explains One of the

  Biggest Mysteries of the U.S. Economy.” Bloomberg Business, May 26. http://

  www .bloomberg .com / news / articles / 2015-05-26/ goldman- how- grand- theft- auto

  - explains- one- of-the- biggest- mysteries- of-the- u- s- economy.

  Alon, Titan, David Berger, Robert Dent, and Benjamin Pugsley. 2017. “Older and

  Slower: The Startup Defi cit’s Lasting Eff ects on Aggregate Productivity Growth.”

  NBER Working Paper no. 23875, Cambridge, MA.

  Andrews, Dan, Chiara Criscuolo, and Peter Gal. 2016. “The Best versus the Rest: The Global Productivity Slowdown, Divergence across Firms and the Role of

  Public Policy.” OECD Productivity Working Papers no. 5, Paris, OECD Publish-

  ing. Dec. 2.

  Aral, Sinan, Erik Brynjolfsson, and Lynn Wu. 2012. “Three- Way Complementari-

  ties: Performance Pay, HR Analytics and Information Technology.” Management

  Science 58 (5): 913– 31.

  Arrow, Kenneth. 1962. “Economic Welfare and the Allocation of Resources for

  Invention.” In The Rate and Direction of Inventive Activity: Economic and Social

  Factors, edited by Richard R. Nelson, 609– 26. Princeton, NJ: Princeton Univer-

  sity Press.

  Atkeson, Andrew, and Patrick J. Kehoe. 2007. “Modeling the Transition to a New

  54 Erik Brynjolfsson, Daniel Rock, and Chad Syverson

  Economy: Lessons from Two Technological Revolutions.” American Economic

  Review 97 (1): 64– 88.

  Autor, David, David Dorn, Lawrence F. Katz, Christina Patterson, and John Van

  Reenen. 2017. “Concentrating on the Fall of the Labor Share.” American Eco-

  nomic Review, Papers and Proceedings 107 (5): 180– 85.

  Autor, David, and Anna Salomons. 2017. “Robocalypse Now– Does Productivity

  Growth Threaten Employment?” European Central Bank Conference Proceed-

  ings, June.

  Baumol, William, and William Bowen. 1966. Performing Arts, The Economic Dilemma:

  A Study of Problems Common to Theater, Opera, Music, and Dance. New York:

  Twentieth Century Fund.

  Bessen, James E. 2017. “AI and Jobs: The Role of Demand.” Law and Economics

  Research Paper no. 17-46, Boston University School of Law.

  Bloom, Nicholas, Charles I. Jones, John Van Reenen, and Michael Webb. 2017. “Are

  Ideas Getting Harder to Find?” NBER Working Paper no. 23782, Cambridge, MA.

  Bresnahan, Timothy, Erik Brynjolfsson, and Lorin Hitt. 2002. “Information Tech-

  nology, Workplace Organization, and the Demand for Skilled Labor: Firm- Level

  Evidence.” Quarterly Journal of Economics 117 (1): 339– 76.

  Bresnahan, Timothy F., and Manuel Trajtenberg. 1996. “General Purpose Tech-

  nologies: ‘Engines of Growth’?” Journal of Econometrics, Annals of Econometrics

  65 (1): 83– 108.

  Bridgman, B., A. Dugan, M. Lal, M. Osborne, and S. Villones. 2012. “Accounting

  for Household Production in the National Accounts, 1965– 2010.” Survey of Cur-

  rent Business 92 (5): 23– 36.

  Brynjolfsson, Erik. 1993. “The Productivity Paradox of Information Technology.”

  Communications of the ACM 36 (12): 66– 77.

  Brynjolfsson, Erik, and Lorin Hitt. 2000. “Beyond Computation: Information Tech-

  nology, Organizational Transformation and Business Performance.” Journal of

  Economic Perspectives 14 (4): 23– 48.

  ———. 2003. “Computing Productivity: Firm- Level Evidence.” Review of Econom-

  ics and Statistics 85 (4): 793– 808.

  Brynjolfsson, Erik, Lorin Hitt, and Shinkyu Yang. 2002. “Intangible Assets: Com-

  puters and Organizational Capital.” Brookings Papers on Economic Activity 2002

  (1). Brookings Institution. https:// www .brookings .edu / bpea - articles / intangible

  - assets - computers - and - organizational - capital/.

  Brynjolfsson, Erik, and Andrew McAfee. 2011. Race against the Machine. Lexing-

  ton, MA: Digital Frontier.

  ———. 2014. The Second Machine Age: Work, Progress, and Prosperity in a Time of

  Brilliant Technologies. New York: W. W. Norton & Company.

  ———. 2017. “What’s Driving the Machine Learning Explosion?” Harvard Business

  Review 18:3– 11. July.

  Brynjolfsson, Erik, Andrew McAfee, Michael Sorell, and Feng Zhu. 2008. “Scale

  without Mass: Business Process Replication and Industry Dynamics.” HBS Work-

  ing Paper no. 07– 016, Harvard Business School. https:// hbswk .hbs .edu / item / scale

  - without - mass - business - process - replication - and - industry - dynamics.

  Brynjolfsson, Erik, and Tom Mitchell. 2017. “What Can Machine Learning Do?

  Workforce Implications.” Science 358 (6370): 1530– 34.

  Brynjolfsson, Erik, and Michael D. Smith. 2000. “Frictionless Commerce? A Com-

  parison of Internet and Conventional Retailers.” Management Science 46 (4):

  563– 85.

  Byrne, David M., John G. Fernald, and Marshall B. Reinsdorf. 2016. “Does the

  Artifi cial Intelligence and the Modern Productivity Paradox 55

  United States Have a Productivity Slowdown or a Measurement Problem?” Brook-

  ings Papers on Economic Activity Spring:109– 82.

  Cardarelli, Roberto, and Lusine Lusinyan. 2015. “U.S. Total Factor Productivity

  Slowdown: Evidence from the U.S. States.” IMF Working Paper no. WP/ 15/ 116,

  International Monetary Fund.

  Case, Anne, and Angus Deaton. 2017. “Mortality and Morbidity in the 21st Cen-

  tury.” Brookings Papers on Economic Activity Spring: 397_476.

  Cette, Gilbert, John G. Fernald, and Benoit Mojon. 2016. “The Pre- Great Recession

  Slowdown in Productivity.” European Economic Review 88:3– 20.

  Conference Board. 2016. “The Conference Board Total Economy Database: Sum-

  mary Tables (November 2016).” New York, The Conference Board.

  Congressional Budget Offi

  ce (CBO). 2016. The Budget and Economic Outlook: 2016

  to 2026. https:// www .cbo .gov / publication / 51129.

  ———. 2017. The 2017 Long- Term Budget Outlook. https:// www .cbo .gov / publication

  / 52480 .

  Cowen, Tyler. 2011. The Great Stagnation: How America Ate All the Low- Hanging<
br />
  Fruit of Modern History, Got Sick, and Will (Eventually) Feel Better. New York: Dutton.

  David, Paul. 1991. “Computer and Dynamo: The Modern Productivity Paradox in

  a Not- Too- Distant Mirror.” In Technology and Productivity: The Challenge for

  Economic Policy, 315– 47. Paris: OECD Publishing.

  David, Paul A., and Gavin Wright. 2006. “General Purpose Technologies and Surges

  in Productivity: Historical Refl ections on the Future of the ICT Revolution.” In

  The Economic Future in Historical Perspective, vol. 13, edited by Paul A. David and Mark Thomas. Oxford: Oxford University Press.

  De Loecker, Jan, and Jan Eeckhout. 2017. “The Rise of Market Power and the Macro-

  economic Implications.” NBER Working Paper no. 23687, Cambridge, MA.

  Esteva, A., B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.

  2017. “Dermatologist- Level Classifi cation of Skin Cancer with Deep Neural Net-

  works.” Nature 542 (7639): 115– 18.

  Feldstein, Martin. 2015. “The U.S. Underestimates Growth.” Wall Street Journal, May 18.

  Fernald, John G. 2014. “A Quarterly, Utilization- Adjusted Series on Total Factor

  Productivity.” FRBSF Working Paper no. 2012– 19, Federal Reserve Bank of San

  Francisco. Updated March 2014. https:// www .frbsf .org / economic - research / fi les

  / wp12-19bk .pdf.

  Fortunato, Meire, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian

  Osband, Alex Graves, Vlad Mnih, et al. 2017. “Noisy Networks for Exploration.”

  arXiv preprint arXiv:1706.10295. https:// arxiv .org / abs / 1706 .10295.

  Furman, Jason, and Peter Orszag. 2015. “A Firm- Level Perspective on the Role of

  Rents in the Rise in Inequality.” Presentation at A Just Society Centennial Event

  in Honor of Joseph Stiglitz at Columbia University, Oct. 16.

  Gehring, J., M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. 2017. “Convolu-

  tional Sequence to Sequence Learning.” arXiv preprint arXiv:1705.03122. https://

  arxiv .org / abs / 1705 .03122.

  Gordon, Robert J. 2014. “The Demise of US Economic Growth: Restatement,

  Rebuttal, and Refl ections.” NBER Working Paper no. 19895, Cambridge, MA.

  ———. 2015. The Rise and Fall of American Growth: The U.S. Standard of Living

  since the Civil War. Princeton, NJ: Princeton University Press.

  Gutiérrez, Germán, and Thomas Philippon. 2017. “Declining Competition and

  Investment in the U.S.” NBER Working Paper no. 23583, Cambridge, MA.

  56 Erik Brynjolfsson, Daniel Rock, and Chad Syverson

  Guvenen, Fatih, Raymond J. Mataloni Jr., Dylan G. Rassier, and Kim J. Ruhl. 2017.

  “Off shore Profi t Shifting and Domestic Productivity Measurement.” NBER

  Working Paper no. 23324, Cambridge, MA.

  Hall, Robert E. 2000. “E- Capital: The Link between the Stock Market and the Labor

  Market in the 1990s.” Brookings Papers on Economic Activity Fall:73– 118.