The Deadly Dinner Party: and Other Medical Detective Stories Read online

Page 3


  In the command post hastily assembled to deal with the emerging epidemic, Kondracki quickly arranged for release of the antitoxin. The CDC headquarters, in Atlanta, maintains stockpiles at strategic locations across the country and keeps a phone line available to physicians twenty-four hours per day, seven days per week. The nearest antitoxin was at the quarantine station at John F. Kennedy Airport in New York City, about 115 miles away.

  Until this point, Pam Stogess hadn’t been particularly frightened about the disease. But when she heard about the cure, she finally understood that her life was in danger. “The doctors explained that there are sometimes serious side effects to the antitoxin, including fatal allergic reactions. That’s when I realized how grave the situation was.”

  In the meantime, Ulster County health inspectors Brian Devine and Kevin DuMond had arrived at the Kingston hospital. “I got a call at home,” remembers Devine, “from my director, who requested that I initiate an investigation of a possible botulism outbreak. We arrived at the hospital at around 6:15 PM. After interviewing the patients, we questioned the people who attended the dinner party who had not fallen ill, to determine who had eaten which foods.” They tallied up just who had eaten what, and based on this information the inspectors singled out two likely culprits—the garlic bread and the cheese ball. Since all seven diners had eaten the casserole, the sausage (ironically, given the origin of the word “botulism”) was an unlikely source of the toxin. Steve Gelson, Pam Stogess, and Art Landry had all eaten the garlic bread, but so had Barbara Landry.

  The CDC had already notified Pickard that a garlic-in-oil preparation had been responsible for a 1985 outbreak in Vancouver, Canada. That incident came to light when two teenage sisters and their mother, who had traveled from Vancouver to Montreal, developed visual problems, difficulty swallowing, and weakness. Botulism was diagnosed. They had eaten at a family-style restaurant back in Vancouver. When this was publicized, many more cases were identified. Ultimately this outbreak became one of the largest ever in North America, affecting thirty-six people from three countries, including several areas of the United States and eight Canadian provinces. The source turned out to be garlic packed in oil, which was supposed to be kept refrigerated but had not been.

  When a cluster of typical cases occurs, little else but botulism can explain it; however, nature is not always that accommodating to the diagnostician. One of the most interesting aspects of the Vancouver outbreak was the long list of incorrect diagnoses that these patients were given before the botulism was identified in the three women. Seven had been diagnosed with myasthenia gravis, and four each with viral syndromes and psychiatric disturbances. Three each were diagnosed with stroke and Guillain-Barré syndrome, and many others with a myriad of other conditions (including overexertion). Only the twin sisters and their mother, representing less than 10 percent of the victims, were correctly diagnosed on the first visit to a physician. Most doctors will never see even a single case of botulism in their entire professional careers, which makes Dr. Pickard’s rapid diagnosis all the more impressive.

  Following up on the CDC’s lead about the garlic and oil, Devine found an eight-ounce jar of Colavita minced garlic packed in extra virgin olive oil. “We arrived at Gelson’s house at about 10 PM and took samples of the garlic in oil, the cheese, and the sausage used in the pasta casserole. We sent these to the state lab in Albany for testing.” The garlic had been packed in oil, shielding it from oxygen, and it was not acidified with preservatives. Also, it had been stored at room temperature. This combination provided a near perfect environment for the spores to germinate into bacteria, which could then produce the toxin in the jar. On Sunday, the evening of the get-together, Steve prepared the garlic bread by slicing pita pockets into eighths, brushing on margarine, garlic, and oil, and then passing them briefly under the broiler—too briefly, as it turned out, to neutralize the toxin. Food must be heated to at least 176 degrees Fahrenheit for fifteen minutes to destroy the botulism toxin.

  Before sending the samples to the lab in Albany, Devine carefully wrapped and labeled each one—an important precaution, since laboratory workers have gotten botulism by inhaling the toxin from improperly prepared samples. At the makeshift command post, Stan Kondracki was working on getting the antitoxin to the patients, but time and weather were working against him. “The CDC officials released the antitoxin quickly. But it was around rush hour, and the bridges around New York City were backed up, so sending it by ground would take too long. We also missed the last commercial flight out. So I called the state police. Although the weather was not favorable, the police dispatched a helicopter to JFK.”

  The pilot, Technical Sergeant John Ludweig, remembers, “I got a call from Captain [Lou] Grosso at approximately 6 PM. He told me there was some kind of serious problem in Kingston. I was at Stewart Airport and needed to pick something up from JFK and take it to Kingston. It was pretty windy on the ground.” Ludweig flew to JFK, picked up the parcel, lifted off from the tarmac, dipped the helicopter’s nose to the west, and pushed forward into the stiff headwind. After a brief but bumpy flight, he touched down on the landing pad at Kingston’s Benedictine Hospital. Local police officers in squad cars met him there. With lights and sirens, the police relayed the serum across town to Kingston Hospital, where all three patients had been admitted to the intensive care unit.

  Steve Gelson’s condition was deteriorating.

  The decision to administer antitoxin is not one that is made lightly. About 20 percent of patients receiving the treatment develop side effects. Because the attending physicians almost never know for sure which type of botulism the patient has at this early stage, they administer a “trivalent” product that protects against all three of the common strains—A, B, and E. For severely afflicted patients, like Gelson, the risk-benefit ratio clearly favors using the medication. But Pam Stogess wasn’t so sure.

  “We were told there was an antitoxin, but that it had some very serious possible side effects, even the possibility of dying from it. I was frightened by this and decided to wait until the next morning to decide. By Friday morning, I couldn’t even pick up my toothbrush, and I decided to get the antitoxin. I got headaches and a rash that lasted two to three weeks. My whole body turned purple and my face swelled up, and then all of it gradually subsided, but I feel very fortunate to have recovered.”

  On Friday morning, five days after the dinner get-together, Brian Devine shipped the samples he had taken from Gelson’s kitchen to the state lab in Albany for testing. By the next day, the state lab had preliminary results suggesting that this was indeed botulism; two days later the lab confirmed that the garlic in oil contained type A botulism toxin, the same type that was later isolated from the patients.

  On March 1, 1989, the New York State Health Department issued a public advisory to inform people that they should discard any jars of the Colavita-brand garlic in oil. The following day, the FDA also issued a warning on the product. The manufacturer, the Colavita Pasta and Olive Oil Company of Newark, New Jersey, voluntarily recalled the product. In all, three hundred cases of four-, eight-, and thirty-twoounce jars had been produced. Steve Gelson, Art Landry, and Pam Stogess later filed a lawsuit against the manufacturer, the distributor, and their local retailer of the product.

  Inspector Devine tried to track the particular jar that Gelson used. Gelson had received the jar of garlic in oil in a Christmas gift basket, along with other Colavita products. The health inspector’s report is ambiguous as to whether Gelson had stored the jar at room temperature or refrigerated it before opening it for the first time. After the first use, like most conscientious cooks, Gelson always kept it refrigerated. But like most people, he didn’t realize that refrigeration would not inactivate any preformed toxin. Garlic comes from the soil, which can contain botulism spores. In the oil, an oxygen-free environment, the spores can germinate and lead to toxin formation. Also, the product was not acidified at the factory with citric or phosphoric acid, a process that wo
uld have diminished the likelihood of toxin formation.

  Devine learned that Gelson had used the jar of Colavita garlic in oil three times. The first time was a few months earlier, when he added the garlic to a heated chicken dish. The second occasion was when he put it in the pasta casserole he served on Saturday night (the one that Dr. Mauceri had attended, the night before the small impromptu gettogether). None of the guests from the Saturday-night affair got sick because the dish had been served piping hot. The third time was on the fateful Sunday-night dinner party.

  Ultimately, all three victims recovered, although it took several months before they were fully recuperated, and to some extent none of them felt truly normal for years afterward. During the 1950s and 1960s, the mortality rate in cases of botulism was approximately 50 percent. In the 1990s, that rate fell to 5 –10 percent, thanks to development of the antitoxin and modern ICU-level care—but it is still a number that is alarmingly high if you are one of those affected or know someone who is.

  And the guests know that things might have turned out much worse. Most of the people at Steve Gelson’s house that night never ate any of the garlic bread, as Pam explains. “We didn’t have room for all the food on the counter, so Steve left the garlic bread on the oven behind his seat. The girls didn’t see it when they filled their plates before retreating to the living room. Halfway through the meal, Steve remembered the garlic bread and offered it around. Miles declined. Art, Barbara, and I each took only one small chip. Steve ate five or six pieces during the rest of the evening.” Barbara Landry was the one person who ate the garlic bread but did not get sick, either because her particular piece contained very little garlic or because she didn’t eat as large a piece as the others.

  The host, Steve Gelson, ate the most garlic bread, and therefore ingested the largest amount of the toxin. Doctors at the hospital had to put him on a mechanical ventilator to restore his breathing, inserting a plastic tube into his trachea to deliver oxygen to his lungs. “I can still feel that tube going down my throat,” he recalls, years later, “and how for the first 15 –20 seconds on the ventilator, you feel like you can’t breathe. I was sedated but awake, and it was very panicky. I was on the ventilator for about two weeks and in the intensive care unit for about five weeks.” He added ruefully, “I only used two teaspoons of garlic in oil for the bread. I never understood how toxic such a tiny amount of a substance can be.”

  2 Everywhere That Mary Went

  Roy Harvey, a postal clerk from Summerton, New York, married Rita Osborn, both in their early forties, on June 3, 1989 (their names and the town’s name are fictional). Harvey, who doubles as an assistant chief of the local fire department, knew that the New York State Association of Fire Chiefs’ convention was going to be held June 11–14, in the Catskills, and he had planned to attend. With a busy work schedule, finding time for their honeymoon was difficult, but the Catskill Mountains are beautiful that time of year. “So we figured we’d make that our honeymoon too,” Harvey recalls. “We had a wonderful time, and I left feeling fine.” But that feeling of well-being was not to last.

  “We were at our camp at Alexandra Bay, on the St. Lawrence River, for July Fourth weekend and I really began to feel sick—like I was coming down with the flu: fevers, headaches. I swallowed aspirins by the ton, but they didn’t help. I felt bad enough so that on Monday, July 3, when my temperature hit 104 degrees, I took myself to the local hospital.” The doctors there examined him and agreed with the self-diagnosis of the flu. But the next day, Roy felt even worse. “The weather was really hot, but I was so chilly and freezing that I needed blankets. And my headache was blinding; I didn’t even want to open my eyes.

  “The drive back to Summerton was terrible, ninety minutes in a standard transmission truck, and one of the first things I did when I got home was to contact my primary care doctor—Dr. Mitchell Brodey. Rita telephoned him.”

  Brodey recalls, “I had taken care of Roy for about seven years, and he’d always been in good health. Because it was unusual for him to call me, I saw him in the office that same day. When he arrived, he looked sick, but I couldn’t find a source for his infection on examination.”

  When a patient consults a doctor for a fever, the physician takes a history and performs a physical examination to determine what, among the literally hundreds of possibilities, might be causing the fever. In this regard, Brodey had an additional advantage. Besides serving as a primary care doctor to his patients, he also has specialized training in infectious diseases. He served as an infectious diseases consultant to local internists and family practitioners. So he would have asked the standard panel of questions: Was there a new rash? A sore throat? Cough or sputum production? Abdominal pain or diarrhea? Burning on urination? And so on. He also would have asked about recent travel to exotic locales, unusual animal or occupational exposure. Next follows the physical examination—is there a swollen liver, or a new heart murmur, a tender prostate or an inflamed joint or red rash?

  The combination of the history and the physical examination, along with the context of a case (for example, the season, the patient’s age and occupation), will usually point the doctor in one of two directions: a focal process (an infection of a particular organ, as in pneumonia or a urinary tract infection), or a generalized process (an infection that does not settle in any one part of the body, as with a virus that simply leaves a patient feeling run down and showing a fever).

  Because the diagnosis was unclear, and the patient looked ill, Brodey admitted Harvey to the local hospital near Syracuse for further diagnostic testing, and to receive intravenous antibiotics, just in case it turned out to be a serious bacterial infection. The other reason for admission was for some old-fashioned observation—a diagnostically useful luxury that modern health economics has all but done away with. Harvey recalls, “Dr. Brodey is probably one of the best doctors you’ll ever meet, and I’m glad he’s my doctor. He came in to see me [in the hospital]. I was half out of it, but I remember him saying, ‘You feel like you’re going to die, don’t you?’ I said, ‘You got it,’ and he said, ‘Well, you’re not.’”

  One of the tests Brodey ordered was a blood culture, to check for bacteria in the bloodstream.

  Later the same day that he admitted Harvey, Brodey was consulted on another patient—a man with a high fever but no true localizing findings in his history or physical examination. “He had spiking fevers, and a headache. As I listened to the story, I remember thinking: ‘This story sounds the same as Mr. Harvey’s,’” Dr. Brodey says. The two cases piqued his professional curiosity.

  A call from the hospital laboratory sated at least part of that curiosity on Friday, July 7. “Roy Harvey’s blood culture was positive for Salmonella typhi—the causative agent of typhoid fever! I was shocked,” recalls Dr. Brodey. “I had been practicing for ten years at that point, and had never seen a case of typhoid.” But even though Brodey had made Harvey’s diagnosis, the answer only raised more questions.

  For instance: How did a man in upstate New York in this day and age get typhoid fever?

  Among the more than two thousand types of salmonella bacteria, Salmonella typhi is unique; it is the undisputed king of salmonella. The lesser species of salmonella have infiltrated a large portion of our food chain, including chickens and their eggs, pigs, cattle, turtles, snakes, and many others, but S. typhi has adapted to only one host—humans. This means that S. typhi, a rod-shaped bacterium, does not exist in other animals, as do the lesser salmonella. The bacillus was first observed by Karl Joseph Eberth in 1880, and scientists learned to grown it in artificial culture medium in 1894. Early vaccines were developed shortly thereafter, but these did little to reduce the effects of typhoid fever.

  The disease’s name derives from the Greek word typhus, meaning cloudy, which refers to the stupor patients exhibit from the fevers. Patients infected with typhoid typically suffer blistering fevers, pounding headaches, and sometimes a hacking cough, abdominal pains, constipation or diarrhea, a
nd often a distinctive rash, somewhat poetically named rose spots. But there is nothing at all poetic about typhoid fever.

  Over the centuries, the disease has claimed countless lives. During the Civil War, the Confederate armies lost approximately 200,000 soldiers all together—roughly split 25 percent from battle-related casualties and 75 percent from disease, much of which was typhoid fever. In the first edition of a classic medical textbook, Principles and Practice of Medicine (1892), Sir William Osler devoted a large section of its 1,050 pages to typhoid—second in length only to the chapter on tuberculosis. The typhoid section detailed his experience with approximately fifteen hundred cases that he personally saw at the Johns Hopkins Hospital. In 1900, typhoid was the most common cause of admission to Boston City Hospital, and the fourth most common cause of death (after tuberculosis, pneumonia, and cancer).

  In the seventh edition of the text (1909), Osler wrote: “Typhoid fever has been one of the great scourges of the armies, and kills and maims more than powder or shot. The story of the recent wars forms a sad chapter in human inefficiency. In the Spanish-American War, . . . one fifth of the soldiers in the national encampments had typhoid fever.” Typhoid killed 1,580 American troops in that campaign; the enemy killed 243.

  Unfortunately typhoid is a problem not just of wartime, nor is it purely of historical interest. The disease is still common in the third world, and cases occur from time to time in industrialized countries too. Of the five hundred or so cases in the United States each year, roughly two-thirds are “imported” by travelers to foreign countries, most commonly in Central America and the Indian subcontinent. Although typhoid is now treatable with antibiotics, 5 –10 percent of patients suffer intestinal bleeding, and 1 percent develop the serious complication of bowel perforation. Despite modern medical care and powerful antibiotics, typhoid still carries a 1 percent mortality rate.